×
  • 登录

注册账号 |  忘记密码

社交账号登录
半岛运输问题doc

  半岛运输问题doc部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

  单一品种运输问题的典型情况:设某种物品有m个产地A1,A2,…,Am,各产地的产量分别是a1,a2,…,am;有N个销地B1,B2,…,Bn,各销地地销量分别为b1,b2,…,bn。假定从产地Ai(i=1,2, …,m)向销地Bj(j=1,2,…,n)运输单位物品的运价是cij,问怎样调运这些物品才能使总运费最小?数据如下标所示半岛

  这就是运输问题的数学模型,它包含M×n个变量,(M十M)个约束方程.其系数矩阵的结构比较松散,且特殊.

  该系数矩陈中对应于变量xij的系数向量pij,其分量中除第i个和第m十j个为1以外,其余的都为零.即

  (2)约束条件系数矩阵的每一列有两个非零元素,对应于每一个变量在前m个约束方程中出现一次,在后n个约束方程中也出现一次。 ∴R(A)≤m+n-1

  第2步:位势法求非基变量的检验数(解的最优性检验),若最优准则σij≥0,则当前解最优,计算停止,否则转第3步。

  例 某公司生产糖果,它有三个加工厂A1,A2,A3,每月产量分别为7t,6t,5t,6t。已知从第i个加工厂到第j个销售店的每吨糖果的运价Cij见表,试设计在满足各销售店需求量的前提下,各加工厂到各销售店的每月调运方案,使总的运费最小。

  若运输问题的某个基可行解有几个非基变量的检验数均为负,在继续进行迭代时,取它们中的任一变量均可使目标函数值得到改善,但通常取σij

  <0中最小者对应的变量为换入变量。

  当迭代到运输问题的最优解时,如果有某非基变量的检验数=0,则说明该运输问题有无穷多最优解。(如上例,为得到另一个最优解,只需让σij=0的非基变量进基)

  当运输问题某部分产地的产量和与另一部分销地的销量和相等时,在迭代过程中有可能在某个格填入一个运量时需同时划去运输表的一行和一列,这时就出现了退化。

  在运输问题中,退化解是时常发生的,为了使表上作业法的迭代工作进行下去,退化解应在同时划去的一行或一列中的某个空格中填入数字0,表示这个格中的变量是取值为0的基变量,使迭代过程中基可行解的分量恰好为m+n-1个。

  b.在用闭回路法调整当前基本可行解时,调整量θ的取值应为θ=min{xij/( i,j )为闭回路上所有偶数号格点}。这时可能出现有两个(或以上)偶数号格点的xij都相等且都为极小值,只能取其中一个为离基格,其余的仍作为基格,而在作运输量调整时,运输量与θ相等的那些偶数号格点的xij都将调整为0,因此得到的也是一个退化了的基可行解。

  例 1 某市有三个造纸厂A1,A2,A3,其纸产量分别为8,5,9个单位,有4个集中用户B1,B2,B3,B4,其需用量为4,3,5,6个单位,由各厂到各用户的单位运价如表所示,试确定总运费最小的调运方案。

  设有三个化肥厂供应四个地区的农用化肥,假设每个地区使用各厂的化肥效果相同,各化肥厂的年产量,各地区的需求量以及它们之间的单位运价如表,求总运费最少的化肥调运方案。

  (1)这是一个产销不平衡的运输问题,总产量为160万吨,四个地区的最低需求为110万吨,最高需求为无限.

  根据现有产量及Ⅰ,Ⅱ,Ⅲ地区的最低需求,第Iv个地区每年最多能分配到(50+60+50)-(30+70+0)=60万吨,这样四个地区的最高需求为50+70+30+60=210万吨,大于总产量.

  (2)为了求得平衡,在产销平衡表中增加一个假想的化肥厂D,其年产量为210-160=50万吨.

  (3)由于各地区的需要量包含两部分,最低需求和额外需求。如地区Ⅰ,其中30万吨是最低需求,故不能由假想化肥厂D供给,令相应运价为M(任意大正数).而另一部分20万吨满足或不满足均可以,因此可以由假想化肥厂D供给,按前面讲的,令相应运价为0。这样,凡是需求分两种情况的地区,实际上可按照两个地区看待.这样可以写出这个问题的产销平衡表(表3—26)和单位运价表(表3—27).

  由于在变量个数相等的情况下,表上作业法的计算远比单纯形法简单得多.所以在解决实际问题时,人们常常尽可能把某些线性规划的问题化为运输问题的数学模型.下面介绍几个典型的例子.

  例1 某厂按合同规定须于当年每个季度末分别提供10,15,25,20台同一规格的柴油机.已知该厂各季度的生产能力及生产每台柴油机的成本如表所示.又如果生产出来的柴油机当季不交货的,每台每积压一个季度需储存、维护等费用0.15万元.要求在完成合同的情况下,做出使该厂全年生产(包括储存、维护)费用最小的决策.

  解: 由于每个季度生产出来的柴油机不一定当季交货,所以设xij为第i季度生产的用于第j季度交货的柴油机数.

  第i季度生产的用于j季度交货的每台柴油机的实际成本Cij应该是该季度单位成本加上储存、维护等费用.Cij的具体数值见表

  此外,由于是产量大于销量的不平衡问题,∴加上一个假想的需求D,就可以把问题变成产销平衡的运输模型,并写出产销平衡表和单位运价表(合在一起,如下)

  经用表上作业法求解,可得多个最优方案,表3—32中列出最优方案之一.即第1季度生产25台,10台当季交货,15台Ⅱ季度交货;Ⅱ季度生产5台.用于Ⅲ季度交货;Ⅲ季度生产30台,其中20台于当季交货,10台于Ⅳ季度交货Ⅳ季度生产10台,于当季交货.按此方案生产,该厂总的生产(包括储存、维护)的费用为773万元.

  铁建设函〔2021〕31号 国铁集团关于发布客货共线铁路简支箱梁圆端形实体桥墩等通用参考图的通知.pdf

  国铁科法〔2020〕26号 国家铁路局关于发布铁路工程造价标准的公告(2020年第2批).pdf

  国铁科法〔2020〕27号 国家铁路局关于发布铁道行业标准的公告(工程建设标准2020年第4批).pdf

  工电桥房函〔2020〕48号 《国铁集团工电部关于加强穿(跨)越铁路营业线和邻近营业线工程方案等审查和施工安全管理的通知》.pdf

  铁发改〔2020〕196号 国铁集团关于印发《铁路线路、车站、桥渡隧名称管理办法》的通知.pdf

相关推荐